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Abstract:  Forecasting rice yield before harvest time is important to supporting planners and decision makers to predict the amount of rice 
that should be imported or exported and to enable governments to put in place strategic contingency plans for the redistribution of food 
during times of famine. This study used three Vegetation Indices (i.e. NDVI, EVI, and RGVI) to predict the amount of rice yields from 
temporal satellite imagery (i.e. Landsat 7 and 8) for the periods 2012 and 2014. Scatterplot classification technique is also implemented to 
estimate the rice yield for the same periods. The estimated results obtained by both the vegetation indices and the scatterplot classification 
techniques have been compared with true amount of the rice product for the same periods to verify the validity of the adopted methods.   

Index Terms— Vegetation Indices, NDVI, EVI, RGVI, Rice Yield Estimation, Scatterplot Classification 

——————————      —————————— 
1 INTRODUCTION 
Rice is one of the most important agriculture crops in many 
countries. It is a primary food source for more than three billions of 
people worldwide [1]. Forecasting rice yield before harvest is 
crucial, especially in regions characterized by climatic uncertainties. 
It enables planners and decision makers to deduce how much to 
import in the case of a shortfall or, optionally, to export in the case 
of a surplus. Forecasting also allows governments to develop a 
strategic contingency plans for distribution the food during times of 
famine. Therefore, monitoring the growth and development of 
plants with guesses of the production yield possess a great 
importance [2].  Over the past twenty-five years, the multispectral 
images taken by satellites have proven as to be a powerful tool in 
determining the amounts of the productivity of agricultural crops 
[3-4]. An important goal of agricultural remote sensing research is 
to spectrally estimate crop variables related to crop conditions, 
which can subsequently be entered into crop simulation and yield 
models [5]. 

To utilize the full potential of remote sensing for the assessment of 
crop conditions and yield prediction, it is essential to quantify the 
relationships between the agronomic parameters and spectral 
properties of the crop [6]. Use of satellite spectral data for the 
estimation of crop yields is an attractive prospect because yield is 
related to crop vigor (i.e. related to the spectral response of the 
crop activity), which in turn is related to the spectral response of 
the crop measured by satellite sensors [7].  

In fact, the correlation between the spectral reflectance of crops 
and their agronomic variables has encouraged many researchers to 
use it for developing crop yield models [8]. Some of the researches 
utilized the global resolution satellite images (e.g. MODIS, SPOT, 
MSS, TM, ETM+, etc.) to estimate the expected rice yield. Too many 
studies have used the satellite imaging to monitor rice growth, for 

instance see [9-10]. Some of these researches have used low and 
moderate image resolution; e.g. National Oceanic and Atmospheric 
Administration (NOAA), Advanced Very High Resolution 
Radiometer (AVHRR) and Moderate Resolution Imaging Spector 
radiometer (MODIS), to monitor rice fields, for instance see [9 and 
11]. 

However, the use of low and moderate spatial resolution of satellite 
imaging has been restricted, particularly in small rice areas because 
many types of land cover appear in few pixels, which reduces the 
accuracy of the assessment.  

The Landsat program is the longest running enterprise for 
acquisition of satellite imagery. It is started on July 23, 1972 when 
the first was launched, it was known as the Earth Resources 
Technology Satellite (ERTS), carried two of instruments: a camera 
system (called Return Beam Vidicon "RBV"), and Multispectral 
Scanner (MSS) recorded data in four spectral bands (i.e. green, red, 
and two infrared bands). The most recent, Landsat 8, was launched 
on February 11, 2013, it consists of eleven spectral bands, eight of 
them with a spatial resolution of 30 meters (i.e. bands 1 to 7 and 9), 
The resolution for Band 8 (panchromatic) is 15 meters. Two thermal 
infrared bands (i.e. 10 and 11) of spatial resolution 100 meters each 
scene cover an area of 170×183 km2. It is also worthwhile to 
mention the specifications of Landsat-7 images that have been 
used in the current study.  Images consist of eight spectral bands 
with a spatial resolution of 30 meters for bands 1 to 5 and 7, while 
band 6 (thermal of 60 meters), and band 8 (panchromatic) is 15 
meters. Again, each scene covers an area of size 170×183 km2. The 
objective of the current study is to provide an overview of the use 
of remote sensing imagery for mapping rice crop areas and 
forecasting its production. Furthermore, reviewing the suitability of 
remote sensing-based methods for mapping rice areas and their 
limitations, and testing their potentiality in forecasting rice yield and 
their functional implication 
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2 The Study Area 
The study area Al-Najaf and Al-Qadisiya district, shown in Figure1, 
is a fertile mudslides land area, about 30 km south of 

Najaf province, 230 km southwest of the Baghdad (capital of Iraq). 
A river (called Al-Hidia) of length 25km, which is part of the 
Euphrates River, passes through the study area. The study area is 
surrounded by rice plantations and palm groves.  

 
 
 
 
 

 

 
Administrative map of Iraq showing the 
international and local borders between the 
provinces. The country lies between the geographic 
coordinates lat.37.38°→ 28.5°N, and Long. 
38.70°→48.75°E. 

Photomap of the study area Al-Najaf and Al-Qadisiya district, Located in 
the south of the Najaf province in the middle-south of Iraq, 
Lat.32.216°→31.550° N, and Long. 44.161°→ 44.724°E. It is an agricultural 
area specialized in planting rice 

Figure1 Administrative map of Iraq country and photomap of the study area 
 

3 Preparing Landsat Images 
As mentioned above, the study based on using the vegetation 
indices and the scatterplot classification techniques on Landsat 
multispectral images to estimate the amount of the rice 
productivity cultivated in the study area (Al-Najaf and Al-Qadisiya). 
The main source we have adopted to get multispectral band images 
for the study area was from the USGS Global Visualization Viewer 
of the Earth Resources and Science Center (EROS) 
[http://glovis.usgs.gov/]. The study area is path/Row 
(168/38). When we dealt with Landsat-7 (i.e. ETM+) images, we 
have encountered by another problem: i.e. the presence of gapes 
due to the failure of Scan Line Corrector (SLC) occurred on May 31, 
2003. Consequently, all ETM+ images after May 31, 2003 have been 
greatly affected by the failure and have lost approximately 22% of 
their data, appear as gaps [12], as illustrated in Figure 2.  

A number of digital techniques have been developed and 
introduced to bridge the gaps in the Landsat-7 (ETM+), [12]. The 
majority of the introduced methods used two scenes (taken at 

different times) to bridge the gaps by transferring pixel values 
from the undistorted areas of the assisted image to 
corresponding gap locations in the processed (reference) image. 
Since the corrected images are required to predict the amount 
of crop yield, which are subject to change in short periods of 
time, as well as to the difficulty in obtaining ETM+ scenes taken in a 
short interval of time, so in our current research we have 
adopted gaps bridging methods based on the neighborhood to 
estimate the gap's values. Two methods have been adopted; i.e. 
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Figure 2 Extracted ETM+ image of the study area (taken in 07-09-2014), 

with gaps 
 

1. In the first method, the gaps locations were filled by the median 
value, utilizing large neighborhood window (size 11×11 pixels), 
the result is illustrated in Figure 3. 

2. In the second method, the ENVI software was utilized to replace 
the gaps locations (considering them as bad values). The gap's 
bridging process uses Delaunay triangulation to fill the bad 
pixels with triangles calculated from the surrounding good 
values (Lee et al., 1980). The result is illustrated in Figure 4. 
 

 
Figure 3 Restored image of study area by median filter of window's size 11×11 

pixels 
 

 

 
Figure 4 Restored image of study area by replacing the bad (zero) values 

 
 
4 Converting Landsat DNs to Top of Atmosphere (ToA) 
Reflectance 
The Landsat sensors capture reflected solar energy, convert them to 
radiance, and then rescale those data into an 8bits digital number 
"DN" (range from 0 →255) for the Landsat-7 ETM+ sensor, and into 

16bits (range from 0 → 65536) for the Landsat-8 OLI sensor. The OLI 
band data can also be converted to TOA planetary reflectance using 
reflectance rescaling coefficients provided in the product metadata 
file (MTL file) that is provided by (http://landsat.usgs.gov/Landsat8 
Using_Product.php). The following equation is used to calibrate DN 
values to TOA reflectance for OLI data as follows: 

)cos( Sz

cal AQM
θ

ρ ρρ
λ

+
=                                     (1) 

 

Where: ρλ = TOA planetary reflectance, Mρ = Bandspecific 
multiplicative, Aρ = Bandspecific additive, Qcal = Quantized and 
calibrated standard product pixel values (DN), θSZ = Local solar 
zenith angle; θSZ = 90° - θSE where θSE = Local sun elevation angle. 
Figure 5 represents the absolute difference between the LandSat-8 
(September 2014) image and its TOA calibrated version. 
 

 
Figure 5 Absolute differences between original Landsat-8 and its TOA calibrated 

images of (September 2014)  
 
The Landsat-7 band data can also converts to TOA, using the 
following calibration equation [13]:  
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Where: Lλ= Spectral radiance at the sensor's aperture, d= Earth–Sun 
distance, ESUNλ= Mean exoatmospheric solar irradiance, and θSZ as 
defined in Eq. (1). 
 
Figure 6 represents the absolute difference between the LandSat-7 
(September 2014) image and its TOA calibrated version. 
 

 
Figure 6 Absolute differences between original Lansat-7 and its TOA calibrated 

image of (September 2014)  
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5 Research Prediction Methods  
As mentioned in beginning of this paper, the mapping distribution 
processes of rice plants will utilize two types of Landsat images (i.e. 
7 and 8), using two approaches (i.e. vegetation indices and 
scatterplot classification method), as will be given below: 
 

5.1 Vegetation Indices  
The remote sensing based methods have been widely used for 
mapping rice areas worldwide, for instance see [9-10]. The satellite 
sensors have the potential of obtaining multi-temporal and multi-
spectral reflectance data over croplands that can be used for 
deriving time-series of vegetation indices (VIs), calculated as a 
function of the provided images by currently 
operating satellites. The pigment in plant leaves (i.e. chlorophyll) 
and its behave in strongly or weakly absorbing or reflecting certain 
electromagnetic sun rays falling on them which is important 
for conducting the photosynthesis process. Among the too many 
indices that have been developed and introduced for monitoring 
the crop growth, we have selected the most common used of them 
to be implemented in this research, mentioned in TABLE 1, [11]. 
 

TABLE 1  
List of the common vegetation indices, and their mathematical 

formula, used to monitoring the crop growth and yield forecasting 
Index Formula 

Normalized Difference  
Vegetation Index  

NDVI dNIR

dNIR

Re

Re

ρρ
ρρ

+
−  

 
Enhanced Vegetation  

Index  
EVI 15.76 Re

Re

+×−×+
−

BluedNIR

dNIR

ρρρ
ρρ  

 
Rice Growth  

Vegetation Index  
RGVI 

21

Re1
SWIRSWIRNIR

dBlue

ρρρ
ρρ
++

+
−  

 
Note: ρ is the surface reflectance values for near infrared 

 (NIR), and shortwave infrared (SWIR1and SWIR2) 
 
4.2 Comparing NDVI of Landsat- 8 and Landsat-7 imageries  
Dates of the images used in this research have been adopted to 
represent the peak of vegetative growth in the studied rice fields 
(i.e. September 2012 and 2014). Unfortunately, there is a time 
difference (8 days) in the passage of the Landsat satellites (7 and 8) 
over the same area. This difference in time means a clear change in 
the vegetative growth of crops, causing slight changes in the NDVI 
measurements. Therefore, the NDVI scatterplots between the 
Landsat images acquired at (7 Sep. and 23 Sep. 2o14) with images of 
Landsat-8 acquired at (18 Sep. 2014) show large differences, as 
illustrated in Figure 7. 
 

  
Figure 7 Comparison between NDVI-scatterplots of Landsat-8 and Landsat-7 

acquired in different times 
 
To avoid the effects of phenology within the 8 day interval between 
Landsat 7 and 8 images, vegetation growth rate relationship was 
developed by [14] for cropland, grassland and shrub land to 
correlate with Landsat-8 NDVI of 15 Sep. 2014 with Landsat-7 NDVI 
of 7 and 23 Sep. 2014. The vegetation growth rate for Landsat-7 
NDVI (for the periods 7&23Sept. 2014) compared with the Landsat-
8 NDVI (of 15Sep. 2014) is given by: 

SepSep

SepSep

NDVINDVI
NDVINDVI

r
715

1523

)()(
)()(

−
−

=                        (3) 

The simulate Landsat-7 NDVI of 15 Sept. 2014 then given by; 
 

r
NDVIrNDVI

NDVI SepSep
Sep +

×+
=

1
)()( 723

.15
              (4) 

 
Figure 8 shows the scatterplot drawn between the simulated 
Landsat-7 NDVI (i.e. NDVI15Sep.) and the Landsat-8 NDVI acquired at 
15Sept. 2014.  
 

         
 

Figure 8.Scatterplot between simulated Landsat-7 NDVI with Landsat-8 NDVI 
 
As it is obvious, the linear relationship between the NDVI of 
Landsat-8 and the simulated NDVI of Landsat-7 indicates a high 
degree of correlation has been achieved using the vegetation 
growth rate presented by Equations (3 & 4) 
 
5.3 Scatterplot Classification Method 
It is well known that the soil has property which shows a linear 
relationship between “NIR” and “Red” reflectance bands. The 
length of the linearity between the “NIR” and “Red” responses is 
affected by the soil’s dryness or wetness contents; i.e. it is 
shortened for homogenous soils, and extended as the soil’s 
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contents varies. Therefore, as the soil line is defined, the 
corresponding reflectance regions of the other spectral classes 
can be decided accordingly. These behaviors have been 
benefited by Ali (2013) to introduce an automatic multispectral 
image classification based on scatterplot method. This 
classification method will be utilized to predict the vegetated 
area in the images of the study area. 
 

6 Results and Discussions 
The results in this section will be divided into two parts; in the first 
part the three adopted vegetation indices (i.e. NDVI, EVI, and RGVI) 
will be used to estimate the dense vegetated areas and, 
consequently, the productive rate of the rice yield in the study area. 
In the second part, the scatterplot classification method will be 
implemented to predict the productivity of the rice yield. 
 
6.1 Vegetation Indices 
As indicated before, three vegetation indices will be adopted to 
perform the rice yield prediction; i.e. 
 
6.1.1 Normalized Difference Vegetation Index (NDVI) 
It is one of the most widely used vegetation index which is typically 
derived from observations from the Advanced Very High Resolution 
Radiometer (AVHRR). The NDVI values range between [-1, +1]. 
According to the United States Geological Survey (USGS) remote 
sensing phenology studies used to measure wavelengths of light 
absorbed and reflected by green plants. The NDVI values are 
categorized as follows; areas of barren rock, sand, or snow usually 
show very low NDVI values (e.g. 0.1 or less). Sparse vegetation such 
as shrubs and grasslands or senescing crops may result in moderate 
NDVI values (i.e. approximately 0.2 to 0.5). High NDVI values 
(approximately 0.4 to 0.8) correspond to dense vegetation such as 
that found in temperate and tropical forests or crops at their peak 
growth stage. In our current study area, the cultivation of rice 
begins in mid of June. Accordingly, the maximum greenness stage is 
expected in mid of September (i.e. three months later). Therefore, it 
is expected to increase the assessment rates of vegetative area 
whenever was closer to September. Figure 9 shows the NDVI 
images acquired by; (1) Landsat-8 OLI sensor at September 2014, 
and (2) Landsat-7 ETM+ sensor at September 2014. 
 

 
NDVI of study area acquired by 
LandSat-8 at September 2014 

 
NDVI of study area acquired  

by LandSat-7 at September 2014 
 

Figure 9 NDVI images for the study area using Landsat 8&7 bands 

The dense vegetative areas of Figure 9 have been isolated (i.e. 0.4 ≤ 
NDVI ≤ 0.8), and their areas were calculated and illustrated in 
Figure10. Note: Area = No. of pixels×30×30 mP

2
P/10000 Hectares  

 

 
Dense vegetation area 83170 

Hectares,  
Landsat-8, at September 2014 

 
Dense vegetation area 

83170Hectares,  
Landsat-7,at September 2014 

 
Figure 10 Extracted dense vegetation areas, using NDVI 

6.1.2 Enhanced Vegetation Index (EVI) 
In December 1999, NASA launched the Terra spacecraft, the flagship 
in the agency’s Earth Observing System (EOS) program. Aboard 
Terra flies a sensor called the Moderate-resolution Imaging 
Spectroradiometer, or MODIS, that greatly improves scientists’ 
ability to measure plant growth on a global scale 3T[15]3T. The MODIS 
science team prepared a new data product–called the Enhanced 
Vegetation Index (EVI) to improve the quality of the NDVI product. 
While the EVI is calculated similarly to NDVI, it corrects for some 
distortions in the reflected light caused by the particles in the air as 
well as the ground cover below the vegetation. The EVI was 
developed to optimize the vegetation signal with improved 
sensitivity in high biomass regions and improved vegetation 
monitoring through a de-coupling of the canopy background signal 
and a reduction in atmosphere influences. The equation was of the 
form, 

LCC
GEVI

BlueredNIR

dNIR

+×−×+
−

=
ρρρ

ρρ

21

Re               (5) 

Where: G is gain factor, L is the canopy background adjustment that 
addresses nonlinear, differential NIR and Red radiant transfer 
through a canopy, and CR1R, CR2R are the coefficients of the aerosol 
resistance term, which uses the blue band to correct for aerosol 
influences in the red band.  
 
The coefficients adopted in the EVI algorithm are, L=1, CR1R=6, CR2R = 
7.5, and G = 1.0, [16]. The final equation form is as it given in table 
1. The EVI values range [-1, 1]. Figure 11 shows the dense 
vegetation area's images acquired by the same sensors of Figure 9. 
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Figure 11 EVI images for the study area using Landsat 8&7 bands 

The dense vegetative areas of Figure 11 have been isolated (i.e. 0.4 
≤ EVI ≤ 0.8) and illustrated in Figure 12. 

 

 

 

 

 

 

 

 
 
 
 
 

Figure 12 Extracted dense vegetation areas, using EVI 

 
6.1.3 Rice Growth Vegetation Index (RGVI) 
Rice like other vegetation contains chlorophyll pigments in its leaves 
that absorb red light and radiate NIR portion. This interaction 
between leaves and the light is often determined by their different 
responses in the red and NIR portions of the reflective light. In 
contrast, absorption properties of the middle infrared band cause a 
low reflectance of rice plants [17]. In irrigated rice fields, especially 
in early transplanting periods, water environment plays an 
important role in rice spectral. The ρBlue band of Landsat has good 
sensitivity to the existence of water; consequently it is desirable for 
the rice growth vegetation index (RGVI) to use the following Landsat 
bands; blur, red, near-infrared, and the shortwave infrared bands 
SWIR1and SWIR2, using the RGVI equation listed in Table 1. The 
RGVI values range [-0.02, 1.44]. Figure 13 shows the RGVI dense 
vegetation area's images acquired by the same sensors of Figure 9. 
 

 

Figure 13 RGVI images for the study area using Landsat 8&7 bands 

The dense vegetative areas of Figure 13 have been isolated (i.e.0.8 ≤ 
RGVI ≤ 0.94) and illustrated in Figure 14. 

 

 
Dense vegetation area  

66547.5Hectares, 
Landsat-8,at September 2014 

 
Dense vegetation area  

66860Hectares, 
Landsat-7,at September 2014 

 
Figure 14 Extracted dense vegetation areas, using RGVI 

6.2 Scatterplot Classification 
As was mentioned before, the rice yield prediction in this study 

utilizes two methods. The vegetation indices (as was conducted 
above) and the classification method based on the scattering 
behaviors of the Landcover components.   One efficient way to 
implement this classification method is that provided by [18]. The 
method is based on dividing the scatterplot diagram of the Red and 
NIR bands into regions corresponding to the reflectance values of 
the Landcover components (i.e. dry soil, wet soil, dry vegetation, 
wet vegetation, dense-healthy vegetation, and water areas), as 
illustrated in Figure 15.   

 
 

 

 

 

 
EVI of the study area acquired by  

LandSat-8 at September 2014 
 
EVI of the study area acquired by  

LandSat-7 at September 2014 

 
Dense vegetation area  

65747.5Hectares, 
Landsat-8, at September 2014 

 
Dense vegetation area 

58697.5Hectares, 
Landsat-7, at September 2014 

 
RGVI of study area acquired by 

LandSat-8 at September 2014 
 

RGVI of study area acquired by  
LandSat-7 at September 2014 
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Figure 15 Classification Scheme Based on Scatterplot 

Figure 16 shows the scatterplot classification result of the study 
area, performed on both Landsat 7&8 images.  
 

 
Scatterplot classified image of  

study area acquired by 
LandSat-8 at September 2014 

 
Scatterplot classified image of  

study area acquired by 
LandSat-7 at September 2014 

 
Figure 16 Scatterplot classification of study area, using Landsat 8&7 bands 

The dense vegetation areas obtained by implementing the 
scatterplot classification method are illustrated in Figure 17.  

 

 
Dense vegetation area  

575925 Hectares, 
 Landsat-8, at September 2014 

 
Dense vegetation area  

44025Hectares,  
Landsat-8, at September 2014 

 
Figure 17 Extracted dense vegetation areas obtained by implementing the 

scatterplot classification method 
 

Table 2 shows the accuracy of the calculated acreage by using the 
vegetation indices and the scatterplot classification techniques 
compared with the actual acreage for the years 2012 and 2014 that 
have been obtained from the publications of the Iraqi Ministry of 

Agriculture; i.e. 67500 Hectares in 2012, and 72807 Hectares in 
2014.  

TABLE 2  
Estimation area and its accuracy 

 

7 CONCLUSIONS 
In this paper, the cultivated areas of the rice farms in the provinces 
of Najaf and 3TAl-Qadisiya 3Tsouth of the Iraqi country have been 
calculated, using the vegetation indices and scatterplot 
classification techniques. Through the research course we have 
faced many problems, these were: The presence of gaps in the 
Landsat-7 (ETM+) images due to the failure of its scan line 
corrector. This problem was overcome by bridging those gaps by 
first utilizing the median filter of large window's size, and second by 
the gaps (zero values) as to be undesirable (bad values) and 
replacing them by utilizing the 3TDelaunay triangulation restoration 
method. 3TIn both these restoration methods, substituted values may 
not represent the true vegetative cover due to the rapid growth 
rates of the crops and the juxtaposition of the vegetated area with 
other varieties of ground cover components. In fact, replacing the 
gap's values by same position pixel values in another time 
asymptotic scene would cause the same error also because the fast 
vegetative growth rates. Therefore, it is expected that the research 
results does not match with the true published values of the 
cultivated areas. 
The second problem we have faced was that the scenes acquired by 
different satellites have different timings in passing over the study 
area. Again because of the rapid rates of vegetative growth, acreage 
estimated areas may vary from one scene to another. To overcome 
this problem we have calibrated the NDVI images, using the 
vegetation growth rate relationship (Eq.(3&4)). The simulated NDVI 

Data used Predictive 
(Agriculture area ) Hectares 

Accuracy 

NDVI 
Landsat 8  (2014) 83170 86% 
Landsat 7  (2014) 83170 99% 

Landsat 7  (2012) 68005 99% 

EVI 
Landsat 8  (2014) 65747.5 90% 
Landsat 7  (2014) 58697.5 80% 

Landsat 7  (2012) 52037.5 77% 

RGVI 
Landsat 8  (2014) 66547.5 91% 
Landsat 7  (2014) 66860 91.8% 

Landsat 7  (2012) 51284 76% 

Scatterplot Classification 

Landsat 8  (15/9/2014)  575925 80% 

Landsat 7  (23/9/2014) 44025 60% 

Landsat 7  (17/9/2012) 36247.5 54% IJSER
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showed high correlation with that produced by another satellite 
image and acquired in different time (Figure 8). 
The Last problem we have encountered was the lack of accurate 
records issued by the Iraqi Ministry of Agriculture for the true 
acreage. For this purpose, research team has visited the study area 
carrying GPS device to install the farm's sites and make sure the 
information was correct. 
Finally, we believe that the use of high-resolution images (e.g. of the 
French satellite "SPOT", resolution 2.5 or 5 meter) would improve 
the assessment of cultivated areas. 
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